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What else can we do with ZedBoard?
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• PL section is also ideal for implementing high-speed 

and high-parallel logic and arithmetic, thanks to its 

highly-programmable logic fabrics.

Ex: Neural Network

Troublesome!
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Machine Learning Drives HLS Boom

• High-Level Synthesis is experiencing a new wave of 

popularity, driven by its ability to handle machine-

learning matrices and iterative design efforts.
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What is High-Level Synthesis (HLS)?

• By abstracting/hiding low-level details with high-level 

representations, high-level synthesis (HLS)

simplifies the description of the circuit dramatically.
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The structural level

involves instantiating, 

configuring and connecting 

hardware elements down to 

the levels of LUTs and FFs.

The register transfer level 

(RTL) interprets operations 

occurring between registers. 

The behavioral HDL 

describes how the circuit 

“behaves” (what we use!)

The high level expresses 

designs at an algorithmic 

level of abstraction.



High 

Level

Synthesis

Logic

Synthesis

High-Level Synthesis & Logic Synthesis

• High-level synthesis 

means synthesizing the 

high-level code into an 

HDL description.

• In FPGA design, the term 

“synthesis” usually refers 

to logic synthesis.

– The process of interpreting 

HDL code into the netlist.

• When taking a HLS design, 

both types of “syntheses”

are applied (one after the 

other)!
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Why High-Level Synthesis (HLS)?

• The designers simply direct the process, while the 

HLS tools (i.e., Vivado HLS) implement the details.

– Designs can be generated much more rapidly.

• The designer must trust the HLS tools in implementing lower-level 

functionality correctly and efficiently.

• HLS separates the functionality and implementation. 

– The source code does not fix the actual implementation.

– Variations on the implementations can be created quickly 

by applying appropriate directives to the HLS process.

• Rather than having to fundamentally re-work the source code.

• HLS from software languages is convenient.

– Engineers are comfortable with languages such as C/C++.

In one word: HLS shoots for productivity.
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Design Metrics in HLS

• Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware 

required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at 

which the circuit can process data.
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Poor 

Design!
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High 

Level

Synthesis

Logic

Synthesis

Vivado HLS

• In short, Vivado HLS: 

1) First transforms a C, C++, 

or SystemC design into an 

RTL implementation;

• That is, all C-based designs in 

HLS are for implementations 

in programmable logic (PL).

– Which are distinct from 

software code intended to 

run on the processor.

2) Then synthesizes the RTL 

implementation onto the 

programmable logic (PL) 

of a Xilinx FPGA or Zynq

device.
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Inputs to Vivado HLS

1) C/C++/SystemC Files

– Functions to be 

synthesized.

2) C Testbench Files

– Basis for verifying both   

C code and RTL codes.

3) Constraints 

– Timing constraints along 

with a clock uncertainty  

and device details.

4) Directives

– Implementation styles of 

pipelining and parallelism.
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Outputs from Vivado HLS

• The possible 

outputs produced 

could be:

1) VHDL or Verilog 

files/codes

2) Packaged IP (for 

Block Design in 

Vivado)

3) SystemC model

• The designer can 

choose based on 

different “prototyping 

styles”.
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Vivado HLS Process

• The HLS process involves two major aspects:

1) The interface of the design, i.e. its top-level connections, 

2) The functionality of the design, i.e. the algorithm(s).
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Interface

Synthesis

Vivado HLS: Interface Synthesis

• The interface can be created manually, or inferred 

automatically from the code (interface synthesis).

– The ports are inferred from the top-level function 

arguments and return values of the source C/C++ file;

– The protocols are inferred from the behavior of the ports.
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Vivado HLS: Algorithm Synthesis (1/4)

• The algorithm synthesis comprises three primary 

stages, which occur in the following order:

1) Extraction of Data Path and Control

2) Scheduling and Binding

3) Optimizations

1) Extraction of Data Path and Control

– The first stage of HLS is to analyze the C/C++/SystemC

code and interpret the required functionality.

– The implementation will normally have a datapath

component, and a control component. 

• Datapath: operations performed on the data samples, 

• Control: the circuitry required to co-ordinate dataflow processing. 
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Vivado HLS: Algorithm Synthesis (2/4)

2) Scheduling and Binding

– Scheduling is the translation of the RTL statements 

interpreted from the C code into a set of operations, each 

with an associated duration in terms of clock cycles.

– Binding is the process of associating the scheduled 

operations with the physical resources of the target device.
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Vivado HLS: Algorithm Synthesis (3/4)

2) Scheduling and Binding (Cont’d)

– The resulting implementation has a set of metrics including 

(i) latency, (ii) throughput, and (iii) the amount of resources.

• By default, the HLS process optimizes area (i.e., the first strategy).
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Vivado HLS: Algorithm Synthesis (4/4)

3) Optimizations

• The designer can dictate the HLS process towards 

the desired implementation goals:

– Constraints: The designer places a limit on the design. 

• For instance, the minimum clock period may be specified. 

– This makes it easy to ensure that the implementation meets the 

requirements of the system into which it will be integrated.

– Directives: The designer can exert more specific influence 

over aspects of the RTL implementation.

• HLS tool provides pragmas that can be used to optimize the design.

• For example, how the HLS treats loops or arrays identified in the C 

code, or the latency of particular operations. 

– This can yield significant changes to the RTL output

– Therefore, with knowledge of the available directives, the designer can 

optimize according to application requirements.
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https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505
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Optimizations: Loop

• Loops are used extensively in programming, and

constitute a natural method of expressing operations 

that are repetitive in some way.

• By default, Vivado HLS seeks to optimize area:

Loops are automatically “rolled” (a.k.a. rolled loops).

– That is, loops time-share a minimal set of hardware. 
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• The operations in a loop are 

executed sequentially.

• The next iteration can only 

begin when the last is done.



Optimization #1: Loop Pipelining (1/2)

• Several loop optimizations can be made using 

directives in Vivado HLS.

– Allowing the resulting implementation to be altered with just 

few or even no changes to the software code.

• Loop pipelining allows the operations in a loop to be 

implemented in a concurrent manner.
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– The initiation interval (II) is 

the number of clock cycles 

between the start times of 

consecutive loop iterations.



Optimization #1: Loop Pipelining (2/2)
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• To pipeline a loop, put the directive “#pragma HLS 
pipeline [II=1]” at the beginning of the loop body.

– Vivado HLS automatically tries to pipeline the loop with the 

minimum initiation interval (II).

– Without the optional II=1 , the best possible initiation 

interval 1 is used, meaning that input samples can be 

accepted on every clock cycle.



Optimization #2: Loop Unrolling (1/2)

• Loop unrolling is a technique to exploit parallelism 

by creating copies of the loop body.

– Unrolling a loop by a factor of N creates N copies of the 

loop body, and the loop variable referenced by each copy is 

updated accordingly.

• If the factor N is less than the total number of loop iterations (10 in 

the below example), it is called a "partial unroll".

• If the factor N is the same as the number of loop iterations, it is 

called a "full unroll". 
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Rolled Loops Loops Unrolled by a Factor of 2



Optimization #2: Loop Unrolling (2/2)

• Loop unrolling creates more operations in each loop 

iteration, resulting higher parallelism and throughput.

• To unroll a loop, put the directive “#pragma HLS 
unroll [factor=N]” at the beginning of the loop.

– Without the optional factor=N, the loop will be fully 

unrolled by default.
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Optimization #3: Merging Loops (1/2)

• In some cases there might be multiple loops

occurring one after the other in the code.

– For instance, the addition loop is followed by a similar loop 

which multiplies the elements of the two arrays. 
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Optimization #3: Merging Loops (2/2)

• A possible optimization is to merge the two loops. 

– That is, both the addition and multiplication operations are 

conducted within the single loop body.

• To merge loops, put directive “#pragma HLS 
loop_merge” at the beginning of a function/loop body.

– There is no need to explicitly change to the source code. 
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Optimization #4: Flattening Loops

• We may “flatten” nested loops to unroll inner loop(s) 

via the directive “#pragma HLS loop_flatten”. 

– Avoid extra clock cycles transitioning into or out of a loop;

– Apply larger unrolling parameters to explore the parallelism;

– Apply the pipeline pragma easily.
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flattened loop:
for (i=0;i<3*4;i++) {

...
}



Factors Limiting the Parallelism (1/2)

• Loop optimizations aim at exploiting the parallelism

between loop iterations. 

– However, parallelism between loop iterations can be limited 

mainly by data dependence or hardware resources.
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– The subsequent iteration cannot start 

until the current iteration has finished.
– Array accesses are a common 

source of loop-carried dependences.

– Automatic dependence analysis can be too conservative:

Directive “#pragma HLS dependence” allows you to 

explicitly specify and avoid a false dependence.

• Loop-carried Dependence: A data dependence 

from an operation in an iteration to                         

another in a subsequent iteration.



Factors Limiting the Parallelism (2/2)

• Another limiting factor for parallelism is the number of 

available hardware resources.

– If the loop is pipelined with an initiation interval of one, 

there are two read operations.

• If the memory has only one port, then two read operations cannot

be executed simultaneously and must be executed in two cycles.

– Thus, the minimal initiation interval can only be two.
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Optimizations: Array Partition (1/3)

• Arrays are usually mapped to the Block RAM (BRAM) 

of PL, where BRAM has limited read/write ports.

• Partitioning an array into smaller arrays increases 

the port number and may improve the throughput.

• To partition an array, put directive “#pragma HLS 
array_partition [arguments]” within the 

boundaries where the array variable is defined.

– variable=<name>: Specifies the array to be partitioned.

– <type>: Optionally specifies the partition type.

– factor=<int>: Specifies the number of smaller arrays that 

are to be created/partitioned.

– dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
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Optimizations: Array Partition (2/3)

• The <type> argument specifies the partition type:

– block: Splits the array into N equal blocks, where N is the 

integer defined by the factor argument.

– cyclic: Creates smaller arrays by interleaving elements 

from the original array.

– complete: Decomposes the array into individual elements.

CENG3430 Lec09: High Level Synthesis 32



Optimizations: Array Partition (3/3)

• The <dim> argument specifies which dimension of a 

multi-dimensional array to partition.

– Non-zero value: Only the specified dimension is partitioned.

– A value of 0: All dimensions are partitioned.
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Wrap-up: Vivado HLS Design Flow (1/5)

 Inputs to HLS

 Functional 

Verification

 High-Level 

Synthesis

 C/RTL Co-

simulation

 Evaluation of 

Implementation

 Design 

Iterations

 RTL Export
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 Inputs to the HLS Process

– A C/C++/SystemC function, along with 

– A C-based testbench for verifying the operation.

 Functional Verification

– It is necessary to verify the functional integrity of the 

C/C++/SystemC code before synthesizing it into RTL code. 

• This can be achieved by writing a testbench in the same high-level 

language, and checking the results against the “golden reference”.

 High-Level Synthesis

– It transforms C-based codes, together with user-supplied 

directives/constraints, into the RTL description of the circuit.

– Once completed, a set of output files is produced.

• Including design files in the desired RTL language, and other log, 

report files, testbenches, scripts, etc.
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Wrap-up: Vivado HLS Design Flow (2/5)



 C/RTL Co-simulation (Optional)

– The produced RTL implementation can be checked against 

the original C/C++/SystemC code.

– This process re-uses the original, C-based testbench, 

saving the effort of generating a new RTL testbench.
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Wrap-up: Vivado HLS Design Flow (3/5)



 Evaluation of Implementation

– It is also necessary to evaluate the RTL output in terms of 

its implementation and performance.

• For example, the numbers of resources it requires in the PL, the 

latency of the design, maximum supported clock frequency, etc. 

 Design Iterations

– The constraints and directives can be refined based on the 

results of implementation evaluation.

– It is also possible to prompt more fundamental review and 

refinement of original algorithm, as designed in C code.

 RTL Export

– The RTL files (i.e., VHDL or Verilog codes) can be used 

directly, or be packaged as an IP core for easing the 

integration with other Xilinx tools, such as IDE and SDK.
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Wrap-up: Vivado HLS Design Flow (4/5)



Wrap-up: Vivado HLS Design Flow (5/5)
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Lab Exercise: Matrix Multiplication (1/4)

• In this lab, we will develop an accelerator for the 

floating point multiplication on 32x32 matrices.

– The accelerator is connected to an AXI DMA peripheral in 

PL and then to the accelerator coherence port (ACP) in PS.
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Lab Exercise: Matrix Multiplication (2/4)

• The function to be optimized is defined in “mmult.h”:

• How to? Simply put directives properly to direct HLS!
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 L1 iterates over the 

rows of the input matrix A.

 L2 iterates over columns 

of the input matrix B.

 L3 multiplies each 

element of row vector A 

with an element of column 

vector B and accumulates it 

to the elements of a row of 

the output matrix C.



Lab Exercise: Matrix Multiplication (3/4)

• Resource Cost (Post-Implementation Utilization)
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The higher, 

the worse!



Lab Exercise: Matrix Multiplication (4/4)

• Performance (Latency and HW/SW Speedup)
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The higher, 

the worse!

The lower, 

the worse!
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Multiplication with HLS
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