
CENG3430 Rapid Prototyping of Digital Systems

Lecture 09:

Rapid Prototyping (III) –

High Level Synthesis

Ming-Chang YANG

mcyang@cse.cuhk.edu.hk

mailto:mcyang@cse.cuhk.edu.hk

What else can we do with ZedBoard?

CENG3430 Lec09: High Level Synthesis 2

• PL section is also ideal for implementing high-speed

and high-parallel logic and arithmetic, thanks to its

highly-programmable logic fabrics.

Ex: Neural Network

Troublesome!

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis and Algorithm Synthesis

• Case Studies on Optimizations: Loop and Array

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 3

Machine Learning Drives HLS Boom

• High-Level Synthesis is experiencing a new wave of

popularity, driven by its ability to handle machine-

learning matrices and iterative design efforts.

CENG3430 Lec09: High Level Synthesis 4https://semiengineering.com/machine-learning-drives-high-level-synthesis-boom/

https://semiengineering.com/machine-learning-drives-high-level-synthesis-boom/

What is High-Level Synthesis (HLS)?

• By abstracting/hiding low-level details with high-level

representations, high-level synthesis (HLS)

simplifies the description of the circuit dramatically.

CENG3430 Lec09: High Level Synthesis 5

The structural level

involves instantiating,

configuring and connecting

hardware elements down to

the levels of LUTs and FFs.

The register transfer level

(RTL) interprets operations

occurring between registers.

The behavioral HDL

describes how the circuit

“behaves” (what we use!)

The high level expresses

designs at an algorithmic

level of abstraction.

High

Level

Synthesis

Logic

Synthesis

High-Level Synthesis & Logic Synthesis

• High-level synthesis

means synthesizing the

high-level code into an

HDL description.

• In FPGA design, the term

“synthesis” usually refers

to logic synthesis.

– The process of interpreting

HDL code into the netlist.

• When taking a HLS design,

both types of “syntheses”

are applied (one after the

other)!
CENG3430 Lec09: High Level Synthesis 6

Why High-Level Synthesis (HLS)?

• The designers simply direct the process, while the

HLS tools (i.e., Vivado HLS) implement the details.

– Designs can be generated much more rapidly.

• The designer must trust the HLS tools in implementing lower-level

functionality correctly and efficiently.

• HLS separates the functionality and implementation.

– The source code does not fix the actual implementation.

– Variations on the implementations can be created quickly

by applying appropriate directives to the HLS process.

• Rather than having to fundamentally re-work the source code.

• HLS from software languages is convenient.

– Engineers are comfortable with languages such as C/C++.

In one word: HLS shoots for productivity.

CENG3430 Lec09: High Level Synthesis 7

Design Metrics in HLS

• Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware

required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at

which the circuit can process data.

CENG3430 Lec09: High Level Synthesis 8

Poor

Design!

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis and Algorithm Synthesis

• Case Studies on Optimizations: Loop and Array

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 9

High

Level

Synthesis

Logic

Synthesis

Vivado HLS

• In short, Vivado HLS:

1) First transforms a C, C++,

or SystemC design into an

RTL implementation;

• That is, all C-based designs in

HLS are for implementations

in programmable logic (PL).

– Which are distinct from

software code intended to

run on the processor.

2) Then synthesizes the RTL

implementation onto the

programmable logic (PL)

of a Xilinx FPGA or Zynq

device.

CENG3430 Lec09: High Level Synthesis 10

Inputs to Vivado HLS

1) C/C++/SystemC Files

– Functions to be

synthesized.

2) C Testbench Files

– Basis for verifying both

C code and RTL codes.

3) Constraints

– Timing constraints along

with a clock uncertainty

and device details.

4) Directives

– Implementation styles of

pipelining and parallelism.

CENG3430 Lec09: High Level Synthesis 11

Outputs from Vivado HLS

• The possible

outputs produced

could be:

1) VHDL or Verilog

files/codes

2) Packaged IP (for

Block Design in

Vivado)

3) SystemC model

• The designer can

choose based on

different “prototyping

styles”.

CENG3430 Lec09: High Level Synthesis 12

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis and Algorithm Synthesis

• Case Studies on Optimizations: Loop and Array

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 13

Vivado HLS Process

• The HLS process involves two major aspects:

1) The interface of the design, i.e. its top-level connections,

2) The functionality of the design, i.e. the algorithm(s).

CENG3430 Lec09: High Level Synthesis 14

Interface

Synthesis

Vivado HLS: Interface Synthesis

• The interface can be created manually, or inferred

automatically from the code (interface synthesis).

– The ports are inferred from the top-level function

arguments and return values of the source C/C++ file;

– The protocols are inferred from the behavior of the ports.

CENG3430 Lec09: High Level Synthesis 15

Vivado HLS: Algorithm Synthesis (1/4)

• The algorithm synthesis comprises three primary

stages, which occur in the following order:

1) Extraction of Data Path and Control

2) Scheduling and Binding

3) Optimizations

1) Extraction of Data Path and Control

– The first stage of HLS is to analyze the C/C++/SystemC

code and interpret the required functionality.

– The implementation will normally have a datapath

component, and a control component.

• Datapath: operations performed on the data samples,

• Control: the circuitry required to co-ordinate dataflow processing.

CENG3430 Lec09: High Level Synthesis 16

Vivado HLS: Algorithm Synthesis (2/4)

2) Scheduling and Binding

– Scheduling is the translation of the RTL statements

interpreted from the C code into a set of operations, each

with an associated duration in terms of clock cycles.

– Binding is the process of associating the scheduled

operations with the physical resources of the target device.

CENG3430 Lec09: High Level Synthesis 17

Vivado HLS: Algorithm Synthesis (3/4)

2) Scheduling and Binding (Cont’d)

– The resulting implementation has a set of metrics including

(i) latency, (ii) throughput, and (iii) the amount of resources.

• By default, the HLS process optimizes area (i.e., the first strategy).

CENG3430 Lec09: High Level Synthesis 18Example: Calculating the average of an array of ten numbers.

Vivado HLS: Algorithm Synthesis (4/4)

3) Optimizations

• The designer can dictate the HLS process towards

the desired implementation goals:

– Constraints: The designer places a limit on the design.

• For instance, the minimum clock period may be specified.

– This makes it easy to ensure that the implementation meets the

requirements of the system into which it will be integrated.

– Directives: The designer can exert more specific influence

over aspects of the RTL implementation.

• HLS tool provides pragmas that can be used to optimize the design.

• For example, how the HLS treats loops or arrays identified in the C

code, or the latency of particular operations.

– This can yield significant changes to the RTL output

– Therefore, with knowledge of the available directives, the designer can

optimize according to application requirements.

CENG3430 Lec09: High Level Synthesis 19

https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis and Algorithm Synthesis

• Case Studies on Optimizations: Loop and Array

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 20

Optimizations: Loop

• Loops are used extensively in programming, and

constitute a natural method of expressing operations

that are repetitive in some way.

• By default, Vivado HLS seeks to optimize area:

Loops are automatically “rolled” (a.k.a. rolled loops).

– That is, loops time-share a minimal set of hardware.

CENG3430 Lec09: High Level Synthesis 21

• The operations in a loop are

executed sequentially.

• The next iteration can only

begin when the last is done.

Optimization #1: Loop Pipelining (1/2)

• Several loop optimizations can be made using

directives in Vivado HLS.

– Allowing the resulting implementation to be altered with just

few or even no changes to the software code.

• Loop pipelining allows the operations in a loop to be

implemented in a concurrent manner.

CENG3430 Lec09: High Level Synthesis 22

– The initiation interval (II) is

the number of clock cycles

between the start times of

consecutive loop iterations.

Optimization #1: Loop Pipelining (2/2)

CENG3430 Lec09: High Level Synthesis 23

• To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]” at the beginning of the loop body.

– Vivado HLS automatically tries to pipeline the loop with the

minimum initiation interval (II).

– Without the optional II=1 , the best possible initiation

interval 1 is used, meaning that input samples can be

accepted on every clock cycle.

Optimization #2: Loop Unrolling (1/2)

• Loop unrolling is a technique to exploit parallelism

by creating copies of the loop body.

– Unrolling a loop by a factor of N creates N copies of the

loop body, and the loop variable referenced by each copy is

updated accordingly.

• If the factor N is less than the total number of loop iterations (10 in

the below example), it is called a "partial unroll".

• If the factor N is the same as the number of loop iterations, it is

called a "full unroll".

CENG3430 Lec09: High Level Synthesis 24

Rolled Loops Loops Unrolled by a Factor of 2

Optimization #2: Loop Unrolling (2/2)

• Loop unrolling creates more operations in each loop

iteration, resulting higher parallelism and throughput.

• To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]” at the beginning of the loop.

– Without the optional factor=N, the loop will be fully

unrolled by default.

CENG3430 Lec09: High Level Synthesis 25

Optimization #3: Merging Loops (1/2)

• In some cases there might be multiple loops

occurring one after the other in the code.

– For instance, the addition loop is followed by a similar loop

which multiplies the elements of the two arrays.

CENG3430 Lec09: High Level Synthesis 26

Optimization #3: Merging Loops (2/2)

• A possible optimization is to merge the two loops.

– That is, both the addition and multiplication operations are

conducted within the single loop body.

• To merge loops, put directive “#pragma HLS
loop_merge” at the beginning of a function/loop body.

– There is no need to explicitly change to the source code.
CENG3430 Lec09: High Level Synthesis 27

Optimization #4: Flattening Loops

• We may “flatten” nested loops to unroll inner loop(s)

via the directive “#pragma HLS loop_flatten”.

– Avoid extra clock cycles transitioning into or out of a loop;

– Apply larger unrolling parameters to explore the parallelism;

– Apply the pipeline pragma easily.

CENG3430 Lec09: High Level Synthesis 28

flattened loop:
for (i=0;i<3*4;i++) {

...
}

Factors Limiting the Parallelism (1/2)

• Loop optimizations aim at exploiting the parallelism

between loop iterations.

– However, parallelism between loop iterations can be limited

mainly by data dependence or hardware resources.

CENG3430 Lec09: High Level Synthesis 29

– The subsequent iteration cannot start

until the current iteration has finished.
– Array accesses are a common

source of loop-carried dependences.

– Automatic dependence analysis can be too conservative:

Directive “#pragma HLS dependence” allows you to

explicitly specify and avoid a false dependence.

• Loop-carried Dependence: A data dependence

from an operation in an iteration to

another in a subsequent iteration.

Factors Limiting the Parallelism (2/2)

• Another limiting factor for parallelism is the number of

available hardware resources.

– If the loop is pipelined with an initiation interval of one,

there are two read operations.

• If the memory has only one port, then two read operations cannot

be executed simultaneously and must be executed in two cycles.

– Thus, the minimal initiation interval can only be two.

CENG3430 Lec09: High Level Synthesis 30

Optimizations: Array Partition (1/3)

• Arrays are usually mapped to the Block RAM (BRAM)

of PL, where BRAM has limited read/write ports.

• Partitioning an array into smaller arrays increases

the port number and may improve the throughput.

• To partition an array, put directive “#pragma HLS
array_partition [arguments]” within the

boundaries where the array variable is defined.

– variable=<name>: Specifies the array to be partitioned.

– <type>: Optionally specifies the partition type.

– factor=<int>: Specifies the number of smaller arrays that

are to be created/partitioned.

– dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 31

Optimizations: Array Partition (2/3)

• The <type> argument specifies the partition type:

– block: Splits the array into N equal blocks, where N is the

integer defined by the factor argument.

– cyclic: Creates smaller arrays by interleaving elements

from the original array.

– complete: Decomposes the array into individual elements.

CENG3430 Lec09: High Level Synthesis 32

Optimizations: Array Partition (3/3)

• The <dim> argument specifies which dimension of a

multi-dimensional array to partition.

– Non-zero value: Only the specified dimension is partitioned.

– A value of 0: All dimensions are partitioned.

CENG3430 Lec09: High Level Synthesis 33

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

• Algorithm Case Study: Loops

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 34

Wrap-up: Vivado HLS Design Flow (1/5)

 Inputs to HLS

 Functional

Verification

 High-Level

Synthesis

 C/RTL Co-

simulation

 Evaluation of

Implementation

 Design

Iterations

 RTL Export
CENG3430 Lec09: High Level Synthesis 35

 Inputs to the HLS Process

– A C/C++/SystemC function, along with

– A C-based testbench for verifying the operation.

 Functional Verification

– It is necessary to verify the functional integrity of the

C/C++/SystemC code before synthesizing it into RTL code.

• This can be achieved by writing a testbench in the same high-level

language, and checking the results against the “golden reference”.

 High-Level Synthesis

– It transforms C-based codes, together with user-supplied

directives/constraints, into the RTL description of the circuit.

– Once completed, a set of output files is produced.

• Including design files in the desired RTL language, and other log,

report files, testbenches, scripts, etc.
CENG3430 Lec09: High Level Synthesis 36

Wrap-up: Vivado HLS Design Flow (2/5)

 C/RTL Co-simulation (Optional)

– The produced RTL implementation can be checked against

the original C/C++/SystemC code.

– This process re-uses the original, C-based testbench,

saving the effort of generating a new RTL testbench.

CENG3430 Lec09: High Level Synthesis 37

Wrap-up: Vivado HLS Design Flow (3/5)

 Evaluation of Implementation

– It is also necessary to evaluate the RTL output in terms of

its implementation and performance.

• For example, the numbers of resources it requires in the PL, the

latency of the design, maximum supported clock frequency, etc.

 Design Iterations

– The constraints and directives can be refined based on the

results of implementation evaluation.

– It is also possible to prompt more fundamental review and

refinement of original algorithm, as designed in C code.

 RTL Export

– The RTL files (i.e., VHDL or Verilog codes) can be used

directly, or be packaged as an IP core for easing the

integration with other Xilinx tools, such as IDE and SDK.
CENG3430 Lec09: High Level Synthesis 38

Wrap-up: Vivado HLS Design Flow (4/5)

Wrap-up: Vivado HLS Design Flow (5/5)

CENG3430 Lec09: High Level Synthesis 39

Outline

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

• Algorithm Case Study: Loops

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 40

Lab Exercise: Matrix Multiplication (1/4)

• In this lab, we will develop an accelerator for the

floating point multiplication on 32x32 matrices.

– The accelerator is connected to an AXI DMA peripheral in

PL and then to the accelerator coherence port (ACP) in PS.

CENG3430 Lec09: High Level Synthesis 41

Lab Exercise: Matrix Multiplication (2/4)

• The function to be optimized is defined in “mmult.h”:

• How to? Simply put directives properly to direct HLS!

CENG3430 Lec09: High Level Synthesis 42

 L1 iterates over the

rows of the input matrix A.

 L2 iterates over columns

of the input matrix B.

 L3 multiplies each

element of row vector A

with an element of column

vector B and accumulates it

to the elements of a row of

the output matrix C.

Lab Exercise: Matrix Multiplication (3/4)

• Resource Cost (Post-Implementation Utilization)

CENG3430 Lec09: High Level Synthesis 43

The higher,

the worse!

Lab Exercise: Matrix Multiplication (4/4)

• Performance (Latency and HW/SW Speedup)

CENG3430 Lec09: High Level Synthesis 44

The higher,

the worse!

The lower,

the worse!

Summary

• High-Level Synthesis Concepts

– What is, and Why High-Level Synthesis

– Design Metrics in HLS

• Vivado High-Level Synthesis

– Inputs and Outputs

– High-Level Synthesis Process

• Interface Synthesis

• Algorithm Synthesis

• Algorithm Case Study: Loops

– Wrap-up: Vivado HLS Design Flow

• Lab Exercise: Accelerating Floating Point Matrix

Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 45

