HE P LKF

The Chinese University of Hong Kong

CENG3430 Rapid Prototyping of Digital Systems
Lecture 09:

Rapid Prototyping (lll) —
High Level Synthesis
Ming-Chang YANG

Y y
bbbbbbbbbb
............

mailto:mcyang@cse.cuhk.edu.hk

What else can we do with ZedBoard?

%

+ &
) [4
oAl = & T

* PL section is also ideal for implementing high-speed
and high-parallel logic and arithmetic, thanks to its
highly-programmable logic fabrics.

Configurable
Logic Block (CLB)

(N slice)

programmable
interconnects

+]

|

Input / Output
Blocks (IOBs)

..Il......._.

EEgE pem

s @l menl |oe e

s EaE goe ool B8

s s S) T

SIS B E

R e | R

=g geue oow NS

el it i

switch lgagm @aw) mas §e
matix @ @@ @eEl \@s) HE .

L ; . Logic

Do i i i Fabric
FEENE NN ' '
BT R mEe) Be ﬁ?@é-/
mllyreyel @ee aEeEl meleaaps
N Gl A SR Bl =
Sl NLA A DR g oEe |EaEpe
S aryael @em s]
S —— S] ==
sl gggaE]oEas JEd g oee |eaafs
sfleazanl Bem ns L]
s s s e i I s =
.Immmﬂm nEee aaaqg e |seape
sl gggerl @o@ Auel 08 \seokis
..IIIIII..IIIIII “““““ IEDDNENDNODEOEm]

CENG3430 Lec09: High Level Synthesis

Ex: Neural Network

Hidden
Layer 2

/.
OEAN
/s AN ‘ AN
N7 A AN
\’ “*"s"é 0/“\ §‘:‘“
XXX LUK ® Vs
2N NS
NI

V"“
4'1‘\ Y “ ‘: .“.'/
Q ¢\ IAPKY % \\

<
R
AN AR LTI

//)“‘\{w::ex«\yl\;‘.’/[r
N &/

Outline

« High-Level Synthesis Concepts
— What is, and Why High-Level Synthesis
— Design Metrics in HLS

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis and Algorithm Synthesis
« Case Studies on Optimizations: Loop and Array

— Wrap-up: Vivado HLS Design Flow

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 3

Machine Learning Drives HLS Boom _i%

oAl = & T

 High-Level Synthesis Is experiencing a new wave of
popularity, driven by its ability to handle machine-
earning matrices and iterative design efforts.

“When you implement the inference engine, you take the original network model

and run it on an edge or mobile device,” according to Mike Fingeroff, HLS

technologist at Mentor, a Siemens Business. “You reduce the area and power of

the IC, but you look at performance, especially if it's part of something like an ADAS
in an automated vehicle that has some requirement for real-time performance. To
get the best performance you have to tailor the hardware to a specific network and
optimize the model to contribute to that.”

Convolution

Filters 1'. :l,
II ‘I
1
- b Horse
Dog
" 4= Cow
£ :
1 =
Max Pooling

Fully
Connected
Layer

Fig. 1: Higher levels of abstraction are necessary for complex convolutional

designs. Source: Mentor, a Siemens Business
CENG3430 Lec09: High Level Synthesis

https://semiengineering.com/machine-learning-drives-high-level-synthesis-boom/ 4

https://semiengineering.com/machine-learning-drives-high-level-synthesis-boom/

What is High-Level Synthesis (HLS)? %

« By abstracting/hiding low-level detalls with high-level
representations, high-level synthesis (HLS)
simplifies the description of the circuit dramatically.

A The high level expresses
High Level designs at an algorithmic C/C+.+/SystemC
: design entry
level of abstraction.

S TE;;‘U The behavioral HDL
o o Behavioural describes how the circuit
v '-g “behaves” (what we use!)
© E . HDL
= % The register transfer level .
- = RTL (RTL) interprets operations design
> 3 occurring between registers. entry
- &

©

The structural level
involves instantiating,
Structural configuring and connecting
hardware elements down to

CENG3430 Lec09: High Level Synthesis the levels of LUTs and FFs. 5

High-Level Synthesis & Logic Synthesis

* High-level synthesis High
171 : Level
means synthesizing the High Level Synthesis

nigh-level code into an
HDL description.

* |In FPGA design, the term
“synthesis” usually refers
to logic synthesis.

|

|

|

|

|

|

|
— The process of interpreting I
|

|

|
|

Behavioural

RTL

HDL description

HDL code into the netlist.

 When taking a HLS design
both types of “syntheses”
are applied (one after the Netlist
other)!

CENG3430 Lec09: High Level Synthesis 6

Structural

Logic
Synthesis

Why High-Level Synthesis (HLS)?

* The designers simply direct the process, while the
HLS tools (i.e., Vivado HLS) implement the details.

— Designs can be generated much more rapidly.

* The designer must trust the HLS tools in implementing lower-level
functionality correctly and efficiently.

 HLS separates the functionality and implementation.
— The source code does not fix the actual implementation.

— Variations on the implementations can be created quickly
by applying appropriate directives to the HLS process.
« Rather than having to fundamentally re-work the source code.

 HLS from software languages Is convenient.
— Engineers are comfortable with languages such as C/C++.

In one word: HLS shoots for productivity.

CENG3430 Lec09: High Level Synthesis

Design Metrics in HLS

« Hardware design always faces a trade-off between:

1) Area, or Resource Cost — the amount of hardware
required to realize the desired functionality;

2) Speed (specifically throughput or latency) — the rate at
which the circuit can process data.

A
high cost, high throughput @
Poor
I |
= Design!
&
= O
5
2 Q
<

. high cost,
low throughput
(poor solutions!)

. low cost, low throughput

CENG3430 Lec09: High Level Synthesis resource cost 8

Outline

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis and Algorithm Synthesis
« Case Studies on Optimizations: Loop and Array

— Wrap-up: Vivado HLS Design Flow

CENG3430 Lec09: High Level Synthesis 9

Vivado HLS

* In short, Vivado HLS: High
1) First transforms a C, C++, High Level Level
o Synthesis
or SystemC design into an
RTL implementation; r — |
« That s, all C-based designs in | Behavioural

HLS are for implementations |
In programmable logic (PL).
— Which are distinct from

software code intended to
run on the processor.

2) Then synthesizes the RTL
Implementation onto the
programmable logic(PL) o« _
of a Xilinx FPGA or Zynq
device.

RTL

HDL description

Structural

Logic

Netlist :
= Synthesis

CENG3430 Lec09: High Level Synthesis 10

Inputs to Vivado HLS

1) C/C++/SystemC Files o 1os o oyness) |) © "
— Functions to be 11
. optional | +--as--v oo
Synth eS|Zed. fup sub- [i Constraints
2) C Testbench Files g—
— Basis for verifying both _
C code and RTL codes. Vivado HLS
Synthesis

3) Constraints
— Timing constraints along
with a clock uncertainty

and device detalls.

. Packaged IP

" " SystemC
4) Directives RTL mode VHDL / (Vivado / XPS |/
— |mp|ementat|on Styles Of Verilog System Generator)
pipelining and parallelism. synthesisable outputs
11

CENG3430 Lec09: High Level Synthesis

Outputs from Vivado HLS

* The possible
outputs produced
could be:

1) VHDL or Verilog
files/codes

2) Packaged IP (for
Block Design in
Vivado)

3) SystemC model

« The designer can
choose based on
different “prototyping
styles”.

CENG3430 Lec09: High Level Synthesis

sub- | !_
functions | 111

Vivado HLS
Synthesis

SystemC . Packaged IP

RTL mode VHDL / (Vivado / XPS |/
Verilog System Generator)

synthesisable outputs

Constraints

C, C++ or SystemC C testbench
(input files for synthesis)

————————————
I 11 11 I
. 1 11 11 1
optional | +--4+--2 vo—u
- renrmm
I [k N |
i LAl
-
I

Directives

12

Outline

* Vivado High-Level Synthesis

— High-Level Synthesis Process
* Interface Synthesis and Algorithm Synthesis

CENG3430 Lec09: High Level Synthesis 13

Vivado HLS Process

 The HLS process involves two major aspects:
1) The interface of the design, i.e. its top-level connections,
2) The functionality of the design, I.e. the algorithm(s).

Interface Synthesis Interface Synthesis

(or Manual Specification) .ri(hm —— (or Manual Specification)

...Functionality...

CENG3430 Lec09: High Level Synthesis 14

Vivado HLS: Interface Synthesis

* The interface can be created manually, or inferred
automatically from the code (interface synthesis).

— The ports are inferred from the top-level function
arguments and return values of the source C/C++ file;

— The protocols are inferred from the behavior of the ports.

void find average of best X (int *average, int samples[8], int X)

ap_memory Intel‘fac.e ap vid
protocol SyntheS|S protocol

samples_ce0 average _ap_vid

1,

!

samples_address0

32

samples
port interface

average
port interface

samples_q0 average
.
. find_average
& _of best X
7 { 32
> E * X
5

o ap_none
CENG3430 Lec09: High Levelppytaidgsis 15

Vivado HLS: Algorithm Synthesis (1/4),

%

 The algorithm synthesis comprises three primary
stages, which occur in the following order:
1) Extraction of Data Path and Control
2) Scheduling and Binding
3) Optimizations

1) Extraction of Data Path and Control

— The first stage of HLS is to analyze the C/C++/SystemC
code and interpret the required functionality.

— The implementation will normally have a datapath
component, and a control component.
« Datapath: operations performed on the data samples,
« Control: the circuitry required to co-ordinate dataflow processing.

CENG3430 Lec09: High Level Synthesis 16

Vivado HLS: Algorithm Synthesis (2/4):

2) Scheduling and Binding

— Scheduling is the translation of the RTL statements
interpreted from the C code into a set of operations, each
with an associated duration in terms of clock cycles.

— Binding is the process of associating the scheduled
operations with the physical resources of the target device.

Source Files

(C, C++, SystemC)
User
. Technolog
Directives I
v Library

HLS Binding
~—_ N\

CENG3430 Lec09: High Level Synthesis 17

Vivado HLS: Algorithm Synthesis (3/4):

2) Scheduling and Binding (Cont’d)

— The resulting implementation has a set of metrics including
(1) latency, (ii) throughput, and (iii) the amount of resources.
« By default, the HLS process optimizes area (i.e., the first strategy).
(1) IEC S R N S (R (A I N
'

(2) [N N

latency = 11

» latency = 5

Resources

@
A |

Key:

Adder (fabric)
IR \utiplier (fabric)

Adder (DSP48x)

[X] Multiplier (DSP48x)

o)
0]
3
]
<
|
—

Example: Calculating the average of an array of ten numbers.

Vivado HLS: Algorithm Synthesis (4/4).:%

3) Optimizations

* The designer can dictate the HLS process towards
the desired implementation goals:

— Constraints: The designer places a limit on the design.

 For instance, the minimum clock period may be specified.
— This makes it easy to ensure that the implementation meets the
requirements of the system into which it will be integrated.
" — Directives: The designer can exert more specific influence)
over aspects of the RTL implementation.
« HLS tool provides pragmas that can be used to optimize the design.

« For example, how the HLS treats loops or arrays identified in the C
code, or the latency of particular operations.
— This can yield significant changes to the RTL output

— Therefore, with knowledge of the available directives, the designer can
K optimize according to application requirements. j

CENG3430 Lec09: High Level Synthesis 19

https://china.xilinx.com/html_docs/xilinx2019_1/sdsoc_doc/hls-pragmas-okr1504034364623.html#wqn1504034365505

Outline

* Vivado High-Level Synthesis

— High-Level Synthesis Process

« Case Studies on Optimizations: Loop and Array

CENG3430 Lec09: High Level Synthesis 20

Optimizations: Loop

« Loops are used extensively in programming, and
constitute a natural method of expressing operations
that are repetitive in some way.

« By default, Vivado HLS seeks to optimize area:
Loops are automatically “rolled” (a.k.a. rolled loops).

— That is, loops time-share a minimal set of hardware.

« The operations in a loop are Initiation Interval = 3 cycles
executed sequentially. - >

« The next iteration can only
begin when the last is done.

Loop:for(i=1;i<3;i++) { RD_J oW - RO _| oW -

op_ Read; RD

op_Compute; CMP < >

op_Write; Latency = 3 cycles

} - >

Loop Latency = 6 cycles

CENG3430 Lec09: High Level Synthesis 21

f

Optimization #1: Loop Pipelining (1/2) 4%

Several loop optimizations can be made using
directives in Vivado HLS.

— Allowing the resulting implementation to be altered with just
few or even no changes to the software code.

 Loop pipelining allows the operations in a loop to be

Implemented In a concurrent manner.

— The initiation interval (II) IS Initiation Interval = 1 cycle
the number of clock cycles <«—»
between the start times of
consecutive loop iterations.

Loop:for(i=1;i<3;i++) { RD | CMP

op_ Read; RD RD CMP
op_Compute; CMP - -
op_Write; Latency = 3 cycles

} - >

CENG3430 Lec09: High Level Synthesis Loop Latency = 4 cycles 22

Optimization #1: Loop Pipelining (2/2) 44

&
Sy - M

« To pipeline a loop, put the directive “#pragma HLS
pipeline [II=1]" atthe beginning of the loop body.

— Vivado HLS automatically tries to pipeline the loop with the
minimum initiation interval (1I).

— Without the optional II=1 , the best possible initiation
iInterval 1 is used, meaning that input samples can be
accepted on every clock cycle.

for (index a = @; index a < A NROWS; index a++) {
for (index b = @; index b < B_NCOLS; index b++) {
#pragma HLS PIPELINE II=1
float result = @;
for (index d = @; index d < A NCOLS; index d++) {
float product term = in A[index a][index d] * in B[index d][index b];
result += product term;

I
out C[index a * B _NCOLS + index b] = result;

¥
}

CENG3430 Lec09: High Level Synthesis 23

Optimization #2: Loop Unrolling (1/2)

« Loop unrolling is a technigue to exploit parallelism
by creating copies of the loop body.

— Unrolling a loop by a factor of N creates N copies of the
loop body, and the loop variable referenced by each copy is
updated accordingly.

« If the factor N is less than the total number of loop iterations (10 in
the below example), it is called a "partial unroll".

« If the factor N is the same as the number of loop iterations, it is
called a "full unroll".

Rolled Loops Loops Unrolled by a Factor of 2
int sum = 0; int sum = @;
for(int i = 9; 1 < 10; i++) { for(int i = @; 1 < 10; i+=2) {
sum += al[i]; sum += a[1i];
} sum += a[i1+1];
¥

CENG3430 Lec09: High Level Synthesis 24

Optimization #2: Loop Unrolling (2/2) %

* Loop unrolling creates more operations in each loop
iteration, resulting higher parallelism and throughput.

« To unroll a loop, put the directive “#pragma HLS
unroll [factor=N]" at the beginning of the loop.

— Without the optional factor=N, the loop will be fully
unrolled by default.

int sum = 8;

for{(int 1 = ©; 1 < 10; 1++) {

#pragma HLS unreoll factor=2
sum += a[i];

¥

CENG3430 Lec09: High Level Synthesis 25

Optimization #3: Merging Loops (1/2) s

* In some cases there might be multiple loops
occurring one after the other in the code.

— For instance, the addition loop is followed by a similar loop
which multiplies the elements of the two arrays.

void add _mult (short c[12], short m[12], short a[12], sheort b[12])

{ clock cycles
short j; ((Ei;} 1
add loop: for (3=0;3<12;3++) { (fad,;;\‘-l 24
c[3] = a[3] + b[3]; / _/
} FSM f .
behaviour \ E__ E"ir;' 1
mult loop: for (j=8;3j<12;j++) { (:;\'. 48
m[3] = al[3] * b[3l; /
} | b
} ._C t 1

CENG3430 Lec09: High Level Synthesis 26

f

Optimization #3: Merging Loops (2/2) s

* A possible optimization is to merge the two loops.

— That is, both the addition and multiplication operations are
conducted within the single loop body.

void add_mult (short c[12], short m[12], short a[12], short b[12])

1 I/— clock cycles
short j; _L
1 (;PE;WW 1
add_mult_loop: for (j=0;j<12;j++) { (ggds g\ -
c[j] = al3] + bl[3]; \\muy
m[3] = a[3] * b[j1; FSM
} behaviour I| QEKI’[_H\‘ :
} |
v

* To merge loops, put directive “#pragma HLS
loop _merge” at the beginning of a function/loop body.

— There Is no need to explicitly change to the source code.
CENG3430 Lec09: High Level Synthesis 27

Optimization #4: Flattening Loops

 We may “flatten” nested loops to unroll inner loop(s)
via the directive “#pragma HLS loop flatten’.
— Avoid extra clock cycles transitioning into or out of a loop;
— Apply larger unrolling parameters to explore the parallelism;
— Apply the pipeline pragma easily.

enter outer

row_loop : for (j=8;j<3;j++) {

enter
inner

(repeat inner

P loop body x 4 flattened loop:
\\ inner loop body N) » for (i=0;i<3*4;i++) {

column_loop : for (k=8;k<4;k++) {

i & cles
.« Statements ... =

. repeat outer loop body X 3
} exit (= repeat inner loop x 3)
inner

} @~

CENG3430 Lec09: High Level nthesi§t e 28

}

* Loop optimizations aim at exploiting the parallelism
between loop iterations.

— However, parallelism between loop iterations can be limited
mainly by data dependence or hardware resources.

 Loop-carried Dependence: A data dependence

from an operation in an iteration to while (a != b) {
another in a subsequent iteration. if (a > bg
a -= b;
— The subseqguent iteration cannot start else
until the current iteration has finished. b -= a;}
— Array accesses are a common for (1= 1: 1< N; ies)
source of loop-carried dependences. mem[i] = mem[i-1] + i;

— Automatic dependence analysis can be too conservative:
Directive “#pragma HLS dependence” allows you to

explicitly specify and avoid a false dependence.
CENG3430 Lec09: High Level Synthesis 29

Factors Limiting the Parallelism (2/2)

* Another limiting factor for parallelism is the number of
available hardware resources.
— If the loop is pipelined with an initiation interval of one,

there are two read operations.

* If the memory has only one port, then two read operations cannot
be executed simultaneously and must be executed in two cycles.

— Thus, the minimal initiation interval can only be two.

(A) Pipeline with 11=1 (B) Pipeline with [1=2
void foo(m[2]...) {
RD
op_Read m[0];
op_Read m[1]; RD
RD CMP - op_Compute; CMP RD RD CMP -
op_Write; -
RD CMP - } 4——p| RD RD CMP -
=1 [1=2

CENG3430 Lec09: High Level Synthesis 30

Optimizations: Array Partition (1/3)

* Arrays are usually mapped to the Block RAM (BRAM)
of PL, where BRAM has limited read/write ports.

e Partitioning an array into smaller arrays increases
the port number and may improve the throughput.

« To partition an array, put directive “#pragma HLS
array partition [arguments]” within the
boundaries where the array variable is defined.

— variable=<name>:. Specifies the array to be partitioned.
- <type>: Optionally specifies the partition type.

- factor=<int>: Specifies the number of smaller arrays that
are to be created/partitioned.

- dim=<int>: Specifies which dimension of a multi-

dimensional array to partition.
CENG3430 Lec09: High Level Synthesis 31

oAl = & T

Optimizations: Array Partition (2/3)

* The <type> argument specifies the partition type:

- block: Splits the array into N equal blocks, where N is the
Integer defined by the factor argument.

- cyclic: Creates smaller arrays by interleaving elements
from the original array.

- complete: Decomposes the array into individual elements.

0 1 (N/2-1)
block
N/2 N-2 N-1
: 0 2 N-2
N-3 | N-2 | N-1 cyclic
1 N-3 N-1
2
0
complete N-3
1 N-1
N-2

CENG3430 Lec09: High Level Synthesis

32

Optimizations: Array Partition (3/3) %

oAl = & T

* The <dim> argument specifies which dimension of a
multi-dimensional array to partition.
— Non-zero value: Only the specified dimension is partitioned.

— Avalue of 0: All dimensions are partitioned.
my _array_0[10][6]
my_array[10][6][4] — partition dimension 3 —pe My_array_1[10][6]
my _array 2[10][6]
my _array_3[10][6]

my_array_0[6][4]
my_array[10][6][4] —m partition dimension 1 —we my_array_1[6][4]

my _array 2[6][4]

my _array_3[6][4]
my _array_4[6][4]
my_array_5[6][4]
my_array_6[6][4]
my _array 7[6][4]
my _array_8[6][4]
my_array_9[6][4]

my_array[10][6][4] —m pariition dimension 0 —p= 10x6x4 = 240 registers
CENG3430 Lec09: High Level Synthesis 33

Outline

* Vivado High-Level Synthesis

— Wrap-up: Vivado HLS Design Flow

CENG3430 Lec09: High Level Synthesis 34

Wrap-up: Vivado HLS Design Flow (1/5)
® Inputsto HLS | ... »(C code desn) ((testonch desgn)

@ Functional

[Golden Referenca

Verification . ﬁ

® High-Level |8 i
Synth eSi S O i% C Functional Verification

® CIRTL Co- e
simulation i High Level Synthesis

G Evaluation of - 1: ... ‘ifjeiit?;n
mplementation g SO —— |
teratIOnS o hardware implementation

® RTL Export

CENG3430 Lec09: High Level Synthesis 35

Wrap-up: Vivado HLS Design Flow (2/5)

@® Inputs to the HLS Process
— A C/C++/SystemC function, along with
— A C-based testbench for verifying the operation.

@ Functional Verification

— It is necessary to verify the functional integrity of the
C/C++/SystemC code before synthesizing it into RTL code.
« This can be achieved by writing a testbench in the same high-level
language, and checking the results against the “golden reference”.

® High-Level Synthesis

— It transforms C-based codes, together with user-supplied
directives/constraints, into the RTL description of the circuit.

— Once completed, a set of output files is produced.

* Including design files in the desired RTL language, and other log,

report files, testbenches, scripts, etc.
CENG3430 Lec09: High Level Synthesis 36

Wrap-up: Vivado HLS Design Flow (3/5)

@ C/RTL Co-simulation (Optional)

— The produced RTL implementation can be checked against
the original C/C++/SystemC code.

— This process re-uses the original, C-based testbench,
saving the effort of generating a new RTL testbench.

Functional Verification C/RTL Cosimulation
Original Testbench Cosimulation Testbench
(automatically generated}

C test mputs Vivado HLS C test mputs

C/RTL Cosimulation
Process

Gelden Gelden

Ref Ref

cheek eutputs cheek eutputs

CENG3430 Lec09: High Level Synthesis 37

Wrap-up: Vivado HLS Design Flow (4/5)

® Evaluation of Implementation

— Itis also necessary to evaluate the RTL output in terms of
its implementation and performance.

* For example, the numbers of resources it requires in the PL, the
latency of the design, maximum supported clock frequency, etc.

® Design lterations

— The constraints and directives can be refined based on the
results of implementation evaluation.

— It is also possible to prompt more fundamental review and
refinement of original algorithm, as designed in C code.

@ RTL Export

— The RTL files (i.e., VHDL or Verilog codes) can be used
directly, or be packaged as an IP core for easing the

Integration with other Xilinx tools, such as IDE and SDK.
CENG3430 Lec09: High Level Synthesis 38

Wrap-up: Vivado HLS Design Flow (5/5)

Constraints/ C, C++,
Testbench
Directives W SystemC W H W

N
BT
| }

VHDLNeriIogW \ RTL Wrappeq

RTL Export
IP-XACT | IP Core SysGen

RTL Simulation

CENG3430 Lec09: High Level Synthesis 39

Outline

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS

CENG3430 Lec09: High Level Synthesis 40

Lab Exercise: Matrix Multiplication (1/4)

* In this lab, we will develop an accelerator for the
floating point multiplication on 32x32 matrices.

— The accelerator is connected to an AXI DMA peripheral in
PL and then to the accelerator coherence port (ACP) in PS.

ZYNQ

Processing System Programmable Logic

ARM CPU GFo < AXl-Lite > fimer
and L1- U
Caches

ACP < DMA HLSIP

core

Memory Controller

L2-Cache

CENG3430 Lec09: High Level Synthesis 41

Lab Exercise: Matrix Multiplication (2/4)

* The function to be optimized is defined in “mmult.h”:

template <typename T, int DIM>
void mmult hw(T A[DIM] [DIM], T B[DIM] [DIM], T C[DIM] [DIM])

{

// matrix multiplication of a A*B matrix
Ll:for (int ia = 0; ia < DIM; ++ia) & L1 iterates over the

{ ‘ | . . rows of the input matrix A.
L2:for (int 1b = 0; 1b < DIM; ++1b) .
& L2 iterates over columns

{
of the input matrix B.

T sum = 0;
L3:for (int id = 0; id < DIM; ++id) < L3 multiplies each
{ . ‘ ' | element of row vector A
) sum += Alial [1d] * Blid]l [ab]; with an element of column
Clia] [ib] = sum:; vector B and accumulates it
} to the elements of a row of
} the output matrix C.

 How to? Simply put directives properly to direct HLS!

CENG3430 Lec09: High Level Synthesis 42

Lab Exercise: Matrix Multiplication (3/4)

 Resource Cost (Post-Implementation Utilization)

Utilization - Post-Implementation

Resource Ttilization Available tilization %
LUT 4195 53200 7.89
LUTEAM 250 17400 144
FF 5054 106400 475
BEAM g 140 571
D3P 5 220 2.27
BUFG 1 32 313
The higher,
the worse!
Graph Table

Post-Synthests Post-Implementation

CENG3430 Lec09: High Level Synthesis 43

Lab Exercise: Matrix Multiplication (4/4)
« Performance (Latency and HW/SW Speedup)

Performance Estimates

= Timing {(ns)
= Summary
Clock Target Estimated Uncertainty
ap_clk 10.00 847 1.25

- Latency (clock cycles)

5 Summary The higher,

Latency Interval
min max min max Type
332872 332872 2332873 332873 none the worse!

- Detail

|nstance

Loop

SDK Log | 4 Terminall 23
Senal: (COMB, 115200, 8, 1, Mone, None - COMNECTED) - Enceding: (I50-8859-1)

DMA Init done
Loop time for 1824 iterations is -2 cycles

Running Matrix Mult in SW

Total run time for SW on Processor is 25888 cycles over 1824 tests.
Cache cleared

Total run time for AXT DMA + HW accelerator is 333838 cycles over 1824 tests The Iower
Iﬂcceleratlnn factar: @.77 I
the worse!

CENG3430 Lec09: High Level Synthesis

Summary

« High-Level Synthesis Concepts
— What is, and Why High-Level Synthesis
— Design Metrics in HLS

* Vivado High-Level Synthesis
— Inputs and Outputs

— High-Level Synthesis Process
* Interface Synthesis
 Algorithm Synthesis
 Algorithm Case Study: Loops

— Wrap-up: Vivado HLS Design Flow

« Lab Exercise: Accelerating Floating Point Matrix
Multiplication with HLS

CENG3430 Lec09: High Level Synthesis

45

